
Contents

Application Note

Application Note

Document No.: AN1104

APM32F4xx Series Software Simulating

USART

Version: V1.0

Document No.: AN1104

www.geehy.com Page 1

 Introduction

During the use of the system, the system resources (e.g. serial ports) may be insufficient. In this

case, the IO port can be used to simulate the serial port to serve the same function. This

application note introduces how to realize simulation of serial port by IO port on the APM32F4xx

series through external interrupts and timers.

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 2

Contents

 Introduction .. 1

 Introduction to APM32F4xx USART ... 3

 Software simulating serial port ... 6

 Revision history ...15

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 3

 Introduction to APM32F4xx USART

USART (universal synchronous/asynchronous receiver transmitter) is a serial communication

device that can flexibly exchange full-duplex and half-duplex data with external devices, and

meets the requirements of external devices for industry standard NRZ asynchronous serial data

format. USART also provides a wide range of baud rate and supports multiprocessor

communication. USART supports not only standard asynchronous transceiver mode, but also

some other serial data exchange modes, such as LIN protocol, smart card protocol, IrDA SIR

ENDEC specification and hardware flow control mode. USART also supports DMA function to

realize high-speed data communication.

 Serial port mode

Serial communication refers to the communication mode of sequentially transmitting data bit by

bit. The serial ports are divided into synchronous serial interfaces and asynchronous serial

interfaces.

Synchronous mode: The data blocks in one transmission contains a large amount of data, so the

receive clock shall be strictly synchronized with the transmit clock, and there is an additional

signal line USART_CK that can output the synchronous clock compared with asynchronous mode.

It is applicable to the situations where a large amount of data needs to be transmitted.

The figure below is the USART synchronous transmission timing diagram, which shows four

situations of free combination of polarity and phase. In Figure 1, DBLCFG=0 for the

USART_CTRL1 register, corresponding to the situation of 1 start bit, 8 data bits and 1 stop bit. In

Figure 2, DBLCFG=1 for USART_CTRL1 register, corresponding to the situation of 1 start bit, 9

data bits and 1 stop bit. The clock polarity of USART_CK is determined by CPOL bit of

USART_CTRL2 register: when CPOL is 0, the idle state of the CK pin is low level; when CPOL

is 1, the idle state of the CK pin is high level. The phase of USART_CK is determined by CPHA

bit of USART_CTRL2 register: when CPHA is 0, it means sampling is conducted on the edge of

the first clock; when CPOL is 1, it means sampling is conducted on the edge of the second clock.

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 4

Figure 1 USART Synchronous Transmission Timing Diagram (DBLCFG=0)

Figure 2 USART Synchronous Transmission Timing Diagram (DBLCFG=1)

The asynchronous mode is serial, asynchronous, and full-duplex communication. Synchronous

communication is achieved by agreeing on the same baud rate between the transmitter and the

receiver, and data is transmitted in the same frame format. Usually it is used in short-distances

and low-speed industrial applications. This document mainly discusses the asynchronous serial

port communication.

 Overview of UART communication protocol

The asynchronous communication requires both the transmitter and receiver to agree on the

baud rate and determine the duration of each bit to ensure the timing synchronization of both

sides. The baud rate is the number of symbols of code element transmitted per unit time.

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 5

As shown in Figures 3 and 4, the message format of the serial port is: start bit (1 bit) + data bit

(5~8 bits) + parity bit (0/1 bit) + stop bit (0.5~1.5 bits).

Start bit: When a serial port is used and the transmission is effective, a 1bit low-level start bit

will be automatically generated.

Data bit: The length of valid data during communication, usually 5~8 bits. Before transmitting

and receiving data, the corresponding configuration should be completed.

Parity check bit: Add the check bit to verify whether there are data transmission errors caused

by interference in the transmission process. Set to odd parity to ensure that the number of

logical high bits in the transmitted data is odd; set to even parity to ensure that the number of

logical high bits in the transmitted data is even.

Stop bit: After the valid data is transmitted, transmit the high level of the set number of bits,

indicating the end of transmission of one-frame data.

Idle bit: The data line remains in high-bit state before the logical low bit of next start bit arrives.

The idle bits are not the content of the message.

D0 D1 D2 D4D3 D5 D6 D7D7D6 1 0 1 1

Stop_Bit Start_Bit Stop_Bit

Idle_Bits

8 bits

The Nth character frame

1 1 1

Start_Bit

D0D0 D1

Figure 3 Serial Port Frame Structure Diagram (including idle bits)

D0 D1 D2 D4D3 D5 D6 D7D7D6 1 0 1

Stop_Bit Start_Bit Stop_Bit

8 bits

The Nth character frame

Start_Bit

D0 D1

Figure 4 Serial Port Frame Structure Diagram (excluding idle bits)

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 6

 Software simulating serial port

 Hardware design

This design uses GPIO PB9 and PB10 of APM32F407ZGT6 to simulate the transmitting line TX

and receiving line RX of the serial port, respectively. Use the USB-to-TTL line to connect RX to

PB9 of the development board, TX to PB10, and connect the ground wires on both sides.

PB10(RX)

PB9(TX)

GND

RX

TX

GND

APM32F407 USB to TTL

PC
USB

Figure 5 Hardware Connection Diagram

 Software design

The implementation function of this design is to receive data transmitted from the serial assistant

and then transmit the same data for echo. Set the baud rate to 9600 bps, start bit to 1 bit, data

bit to 8 bits, no parity bit, and stop bit to 1 bit.

The design idea is to divide the function implementation into two parts i.e. receiving part and

transmitting part.

The implementation of receiving function needs to take precise delay as a prerequisite to obtain

correct data. The routine uses a general-purpose timer for timing of 104us (t=1/9600 s=104us) to

enter an interrupt and the data is received bit by bit in the interrupt service function.

Store the received data in the buffer and transmit it to the serial assistant for echo.

The implementation of the transmitting function is relatively simple: set the data line to 0 and

simulate the start bit; use a tick timer for delay of 104us; use the for loop to transmit and delay bit

by bit. After transmission of 8 data bit is completed, set the data line to 1 and simulate the stop

bit.

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 7

Start

GPIO Initial

Interrupt
Configuration

Write interrupt handler
function,

Simulate serial port
timing

Complete data
receiving?

Send the received
data,complete printing

Yes

No

Figure 6 Software Implementation Flow Chart

3.2.1 GPIO configuration

The function completes the initialization configuration of GPIO PB9 and PB10.

Configure the transmitting pin TX PB9 to push-pull output mode with an output speed of

50MHz. When the serial port is idle, the data bit is in a high-level state. Therefore, after the

configuration is completed, PB9 needs to be set to 1.

Configure the receiving pin RX PB10 to pull-up input mode, configure the external interrupt and

a falling edge will be generated before data transmission begins. Therefore, the PB10 interrupt

trigger method is set to falling edge trigger.

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 8

void Soft_Usart_Init(void)

{

 GPIO_Config_T gpioConfig;

 EINT_Config_T eintConfig;

 RCM_EnableAHB1PeriphClock(RCM_AHB1_PERIPH_GPIOB);

 RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_SYSCFG);

 /* Tx GPIOB PIN9 */

 GPIO_ConfigStructInit(&gpioConfig);

 gpioConfig.mode = GPIO_MODE_OUT;

 gpioConfig.otype = GPIO_OTYPE_PP;

 gpioConfig.pin = GPIO_PIN_9;

 gpioConfig.speed = GPIO_SPEED_50MHz;

 GPIO_Config(GPIOB,&gpioConfig);

 GPIO_SetBit(GPIOB,GPIO_PIN_9);

 /* Rx GPIOB PIN10 */

 GPIO_ConfigStructInit(&gpioConfig);

 gpioConfig.mode = GPIO_MODE_IN;

 gpioConfig.pin = GPIO_PIN_10;

 gpioConfig.pupd = GPIO_PUPD_UP;

 gpioConfig.speed = GPIO_SPEED_50MHz;

 GPIO_Config(GPIOB,&gpioConfig);

 SYSCFG_ConfigEINTLine(SYSCFG_PORT_GPIOB,SYSCFG_PIN_10);

 eintConfig.line = EINT_LINE_10;

 eintConfig.mode = EINT_MODE_INTERRUPT;

 eintConfig.lineCmd = ENABLE;

 eintConfig.trigger = EINT_TRIGGER_FALLING;

 EINT_Config(&eintConfig);

 NVIC_EnableIRQRequest(EINT15_10_IRQn,2,3);

}

3.2.2 TMR configuration

The routine uses the TMR4 general-purpose timer. According to the baud rate of 9600 bps, the

duration of each bit of data is 104.16us. Configure the single-counting time of 1us and a cycle

of 104 and the desired timing effect can be produced.

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 9

The TMR4 clock line is APB1, as shown in Figure 7, Figure 8, and Figure 9. According to the

User Manual and the system clock initialization function, it can be seen that APB1 is obtained

through 4 frequency division of AHB1, with a maximum frequency of 42MHz. The TMR clock

frequency is 42 * 2=84MHz. According to the calculation formula, set the prescaler factor to 83,

and obtain the counter driven clock of 84/(83+1)=1MHz, which means that the single-counting

time is 1/1M s=1 us. The time interval for the generation of an interrupt is the automatic reload

value 104 * the time required for single counting 1 us=104 us.

Table 1 Instructions and Use of Calculation Formula

Related formulas Description Calculation

t = 1 / Baud Pulse width=1/baud rate t = 1 / 9600 s ≈ 104 us

CK_CNT = CK_INT/(Division + 1)
Drive counter clock=internal

clock/(prescaler+1)
CK_CNK = 84 /（83+1）= 1MHz

t1 = 1 / CK_CNT Single-counting time=1/drive counter clock t1 = 1/1M s = 1 us

t2 = t1 * period
Time interval for the generation of interrupts

=Time required for single counting * cycle
t2 = t = 1 us * 104 = 104us

Figure 7 RCM Register Configuration

Figure 8 APB1PSC Field Description

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 10

Figure 9 Clock Tree

void TMR4_Init(void)

{

 TMR_BaseConfig_T TMRBaseConfig;

 RCM_EnableAPB1PeriphClock(RCM_APB1_PERIPH_TMR4);

 TMRBaseConfig.clockDivision = TMR_CLOCK_DIV_1;

 TMRBaseConfig.countMode = TMR_COUNTER_MODE_UP;

 TMRBaseConfig.division = 84 - 1;

 TMRBaseConfig.period = 104;

 TMR_ConfigTimeBase(TMR4,&TMRBaseConfig);

 TMR_ClearStatusFlag(TMR4,TMR_FLAG_UPDATE);

 TMR_Enable(TMR4);

 /* Configure NVIC_IRQRequest */

 TMR_EnableInterrupt(TMR4,TMR_INT_UPDATE);

 NVIC_EnableIRQRequest(TMR4_IRQn,2,1);

}

3.2.3 GPIO simulating serial port transmission

According to Figure 3, it can be seen that the data line is in a high-level state when idle, and the

jump from high level to low level indicates the start of communication. Therefore, PB9 is set to 0

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 11

before transmission of valid data; after the start bit is transmitted, delay for 104us according to

the set baud rate, and use the for loop to start transmitting data bits. It should be noted that the

serial port starts transmission from the least significant bit. After data bit transmission is over,

set the pin to 1 to simulate the stop bit.

void Soft_Usart_TXData(u8 ch)

{

 uint8_t i = 0;

 GPIO_ResetBit(GPIOB,GPIO_PIN_9);

 Delay_us(BaudRate_9600);

 for(i = 0; i < 8; i++)

 {

 if(ch & 0x01)

 {

 GPIO_SetBit(GPIOB,GPIO_PIN_9);

 }

 else

 {

 GPIO_ResetBit(GPIOB,GPIO_PIN_9);

 }

 Delay_us(BaudRate_9600);

 ch = ch >> 1;

 }

 GPIO_SetBit(GPIOB,GPIO_PIN_9);

 Delay_us(BaudRate_9600);

}

void Soft_Usart_Send(u8 *buf,u8 len)

{

 uint8_t t;

 for(t = 0;t < len;t++)

 {

 Soft_Usart_TXData(buf[t]);

 Delay_ms(1);

 }

}

3.2.4 GPIO interrupt service function

When a low level is received and the receiving bit exceeds or equals the stop bit, reset the

receiving state to the start bit, enable the timer, and start receiving a new frame of data. If the

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 12

receiving state does not reach the stop bit, it indicates that the falling edge is generated by valid

data, and does not indicate the arrival of new data, and it can directly jump out of the interrupt.

void EINT15_10_IRQHandler(void)

{

 if(EINT_ReadStatusFlag(EINT_LINE_10) != RESET)

 {

 if(Soft_Usart_RXData() == 0)

 {

 if(recvState >= COM_STOP_BIT)

 {

 recvState = COM_START_BIT;

 TMR_Enable(TMR4);

 flag = 1;

 }

 }

 EINT_ClearStatusFlag(EINT_LINE_10);

 }

}

3.2.5 TMR interrupt service function

After the timer is enabled, an interrupt will be triggered every 104us. Enter the interrupt service

function and complete the bitwise receiving of data. As the data is transmitted from the least

significant bit during serial port transmission, after one-bit data is received, it needs to be shifted

and placed in the correct position to ensure the accuracy of the received data. When the stop

bit is read, the received value is stored in the buffer.

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 13

void TMR4_IRQHandler(void)

{

 if(TMR_ReadStatusFlag(TMR4,TMR_FLAG_UPDATE) != RESET)

 {

 TMR_ClearStatusFlag(TMR4,TMR_FLAG_UPDATE);

 recvState++;

 if(recvState >= COM_STOP_BIT)

 {

 TMR_Disable(TMR4);

 USART_buf[len++] = recvData;

 return;

 }

 if(Soft_Usart_RXData())

 {

 recvData |= (1 << (recvState - 1));

 }

 else

 {

 recvData &= ~(1 << (recvState - 1));

 }

 }

}

3.2.6 Main function

After initialization is completed, continue to transmit the received data.

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 14

int main(void)

{

 NVIC_ConfigPriorityGroup(NVIC_PRIORITY_GROUP_2);

 Delay_Init();

 Soft_Usart_Init();

 TMR4_Init();

 while (1)

 {

 if(len > 10)

 {

 len = 0;

 Soft_Usart_Send(USART_buf,11);

 }

 }

}

 Experimental Phenomena

Open the serial debugging assistant, set the baud rate, start bit, data bit, and stop bit, then

transmit the characters and echo them successfully.

Figure 10 Experimental Phenomena

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 15

 Revision history

Table 2 Document Revision History

Date Version Revision History

August 22, 2023 1.0 New edition

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 16

Statement

This manual is formulated and published by Zhuhai Geehy Semiconductor Co., Ltd. (hereinafter referred

to as "Geehy"). The contents in this manual are protected by laws and regulations of trademark,

copyright and software copyright. Geehy reserves the right to correct and modify this manual at any time.

Please read this manual carefully before using the product. Once you use the product, it means that you

(hereinafter referred to as the "users") have known and accepted all the contents of this manual. Users

shall use the product in accordance with relevant laws and regulations and the requirements of this

manual.

1. Ownership of rights

This manual can only be used in combination with chip products and software products of corresponding

models provided by Geehy. Without the prior permission of Geehy, no unit or individual may copy,

transcribe, modify, edit or disseminate all or part of the contents of this manual for any reason or in any

form.

The "Geehy" or "Geehy" words or graphics with "®" or "TM" in this manual are trademarks of Geehy.

Other product or service names displayed on Geehy products are the property of their respective

owners.

2. No intellectual property license

Geehy owns all rights, ownership and intellectual property rights involved in this manual.

Geehy shall not be deemed to grant the license or right of any intellectual property to users explicitly or

implicitly due to the sale and distribution of Geehy products and this manual.

If any third party’s products, services or intellectual property are involved in this manual, it shall not be

deemed that Geehy authorizes users to use the aforesaid third party’s products, services or intellectual

property, unless otherwise agreed in sales order or sales contract of Geehy.

3. Version update

Users can obtain the latest manual of the corresponding products when ordering Geehy products.

If the contents in this manual are inconsistent with Geehy products, the agreement in Geehy sales order

or sales contract shall prevail.

4. Information reliability

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 17

The relevant data in this manual are obtained from batch test by Geehy Laboratory or cooperative third-

party testing organization. However, clerical errors in correction or errors caused by differences in testing

environment may occur inevitably. Therefore, users should understand that Geehy does not bear any

responsibility for such errors that may occur in this manual. The relevant data in this manual are only

used to guide users as performance parameter reference and do not constitute Geehy's guarantee for

any product performance.

Users shall select appropriate Geehy products according to their own needs, and effectively verify and

test the applicability of Geehy products to confirm that Geehy products meet their own needs,

corresponding standards, safety or other reliability requirements. If loses are caused to users due to the

user's failure to fully verify and test Geehy products, Geehy will not bear any responsibility.

5. Compliance requirements

Users shall abide by all applicable local laws and regulations when using this manual and the matching

Geehy products. Users shall understand that the products may be restricted by the export, re-export or

other laws of the countries of the product suppliers, Geehy, Geehy distributors and users. Users (on

behalf of itself, subsidiaries and affiliated enterprises) shall agree and promise to abide by all applicable

laws and regulations on the export and re-export of Geehy products and/or technologies and direct

products.

6. Disclaimer

This manual is provided by Geehy "as is". To the extent permitted by applicable laws, Geehy does not

provide any form of express or implied warranty, including without limitation the warranty of product

merchantability and applicability of specific purposes.

Geehy will bear no responsibility for any disputes arising from the subsequent design and use of Geehy

products by users.

7. Limitation of liability

In any case, unless required by applicable laws or agreed in writing, Geehy and/or any third party

providing this manual "as is" shall not be liable for damages, including any general damages, special

direct, indirect or collateral damages arising from the use or no use of the information in this manual

(including without limitation data loss or inaccuracy, or losses suffered by users or third parties).

http://www.geehy.com/

Document No.: AN1104

www.geehy.com Page 18

8. Scope of application

The information in this manual replaces the information provided in all previous versions of the manual.

©2022 Zhuhai Geehy Semiconductor Co., Ltd. - All Rights Reserved

http://www.geehy.com/

